CE - CIVIL ENGINEERING

CE 2000 How Cities Work: An Introduction to Civil and Environmental Infrastructure Cr. 3
Satisfies General Education Requirement: Social Inquiry
Cities are built on the backbone of infrastructure, particularly civil and environmental infrastructure. These infrastructures provide essential services to residents. This course will make students aware of the tensions that arise out of the social, economic, and environmental demands on sustaining engineered infrastructure in the diverse, pluralistic social forums that are our cities. Students will learn how our engineered urban centers operate so they are better prepared for careers in governance and management, to perform social work with citizens who are disconnected from vital services, work as an engineer toward sustainable urban futures; serve as an informed public health or medical professional, among other endeavors that can benefit from an understanding of how cities strive to serve and provide services to residents. Offered Yearly.

CE 2410 Statics Cr. 3
Basic concepts and principles of statics with applications to Newton's Laws of Motion to engineering problems. Forces, moments, equilibrium, couples, free body diagrams, trusses, frames, fluid statics, friction, area and mass moment of inertia. Offered Every Term.
Prerequisites: MAT 2020 with a minimum grade of C, PHY 2175 with a minimum grade of C, and BE 1500 with a minimum grade of C-
Equivalent: ME 2410

CE 2420 Elementary Mechanics of Materials Cr. 3
Elastic relationships between external forces acting on deformable bodies and the associated stresses and deformations; structural members subjected to axial load, torsion, and bending; column buckling; combined stresses; repeated loads; unsymmetrical bending. Offered Every Term.
Prerequisites: ME 2410 with a minimum grade of C- or CE 2410 with a minimum grade of C-
Equivalent: ME 2420

CE 3010 Introduction to CAD in Civil Engineering Cr. 3
Principles of computer graphics and utilization of computers in the design process. Civil engineering applications of AutoCAD. Offered Every Other Year.
Prerequisite: MAT 2020 with a minimum grade of C- and BE 1200 with a minimum grade of C
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.

CE 3070 Surveying Cr. 3
Principles of plane surveying; measurement of horizontal and vertical distance, directions and angles, traverses, areas. Offered Intermittently.
Prerequisite: PHY 2185 with a minimum grade of C- or PHY 2180 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Course Material Fees: $20

CE 3250 Applied Fluid Mechanics Cr. 4
Application of theoretical fluid mechanics to problems of special interest to civil engineers including pipe flow, open channel flow, forces on submerged bodies, and flow measurement. Laboratory component of course provides experimental verification of theories and computer visualization. Offered Fall.
Prerequisite: MAT 2030 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Course Material Fees: $35

CE 3450 Civil Engineering Materials Cr. 4
Structure, composition and engineering properties of aggregates, cement concrete, asphalt, asphalt concrete, and other civil engineering materials. Mix design, testing, and quality control. Material Fee as indicated in the Schedule of Classes. Offered Winter.
Prerequisite: BE 2100 with a minimum grade of C- and CE 2420 (may be taken concurrently) with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Course Material Fees: $35

CE 4120 Introduction to Environmental Engineering Cr. 3
Introduction to environmental laws; reaction kinetics; principles of mass balances; plug-flow and completely stirred tank reactors; Stoke's Law; Streeter-Phelps oxygen sag curves; water chemistry; hydrologic cycle; population growth models; elements of soil waste management and air pollution. Offered Winter.
Prerequisite: CE 3250 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Course Material Fees: $10

CE 4240 Environmental Engineering Design Cr. 3
Design of engineered environmental systems, including drinking water distribution systems, sanitary and storm water sewer systems, and municipal waste disposal sites. Offered Fall.
Prerequisite: CE 3250 with a minimum grade of C- and CE 4210 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.

CE 4400 Structural Analysis Cr. 4
Basic concepts of structural analysis; reactions, forces, and stresses in trusses and beams; influence lines; elastic deflections; introduction to indeterminate structures; computer applications. Offered Fall.
Prerequisites: CE 2410 with a minimum grade of C- and CE 2420 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
CE 4410 Steel Design Cr. 3
First course in design of steel structures. Introduction to the concepts, requirements, and fundamental skills for steel building structural design. Offered Winter.
Prerequisites: CE 4400 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.

CE 4420 Reinforced Concrete Design Cr. 3
First course in design of concrete structures. Design and analysis of reinforced concrete beams, columns, and other structural members; ACI code requirements, cost concerns, safety, industry practices; introduction to prestressed concrete. Offered Fall.
Prerequisite: CE 4400 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.

CE 4510 Introduction to Geotechnical Engineering Cr. 4
Composition, engineering properties and behavior of soils. Principles of soil mechanics. Experimental determination of engineering classification, strength and deformation characteristics of natural and artificially placed soils. Offered Fall.
Prerequisite: CE 3450 with a minimum grade of C- and CE 3250 (may be taken concurrently) with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Course Material Fees: $30

CE 4600 Transportation Engineering Cr. 3
Transportation functions; transportation systems including highways, railways and airports. Techniques of transportation systems analysis including optimization, network flows and queueing theory. Offered Winter.
Prerequisite: BE 3220 with a minimum grade of C- or BE 2100 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Course Material Fees: $10

CE 4610 Highway Design Cr. 3
This course covers the standards recommended by: American Association of State Highway and Transportation Officials (AASHTO); FHWA; and MDOT for designing and evaluation of highways. Its objective is to introduce the students to the concepts, requirements, and fundamental skills for highway design and evaluation. The primary goal of geometric design is to provide for the safety and comfort of road users with due regard to social, economic and environmental constraints. Although there are suggested design standards and controls that must be followed to meet design goals, their application is determined on a case-by-case basis. The objective of this course is to illustrate the practical application of scientific knowledge to the planning and designing of roadway elements. The course uses up-to-date software design tools in accomplishing these goals. Upon completion of the course, the student is expected to be able to design and evaluate highways per AASHTO, MDOT and FHWA standards. Offered Fall.
Prerequisite: CE 4600 with a minimum grade of C-

CE 4640 Transportation Systems Design and Operation Cr. 3
Provides an overview of various system components of transportation, including the driver, vehicle and roadway. The subject matter will be covered at an intermediate level, appropriate for CEE students already familiar with the basic concepts of transportation engineering who wish to expand their knowledge. There will be a particular emphasis on transportation safety and multimodal roadway operations, as are typical priorities in an urban or suburban setting. Topics include: traffic flow design elements including volume, density and speed; intersection design elements including delay, capacity and crash countermeasures and terminal design elements including inflow, outflow and circulation. Offered Fall.
Prerequisite: CE 4600 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.

CE 4850 Engineering Economy Cr. 3
Economic analysis of engineering projects. Selection of appropriate financial parameters (e.g., interest rates) and methods of analysis for depreciation, tax considerations, and use of accounting data for comparison among investment options. Offered Fall.
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Computer Science, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Course Material Fees: $10
Equivalent: IE 4850

CE 4990 Directed Study Cr. 1-4
Supervised study and instruction in civil engineering. Written report required. Offered Every Term.
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
Repeatable for 6 Credits
CE 4995 Senior Design Project Cr. 3
Satisfies General Education Requirement: Writing Intensive Competency
Capstone design experience through civil engineering projects. Satisfies General Education Writing Intensive requirement. Offered Winter.
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Electrical and Comp Engg, BS in Industrial Engineering, BS in Mechanical Engineering; enrollment limited to students in the College of Engineering.
CE 5220 Environmental Chemistry Cr. 3
Fundamentals of aqueous chemistry for environmental engineers and scientists. Basic chemistry, equilibria, kinetics and thermodynamics; includes acid/base reactions, precipitation/dissolution, oxidation/reduction reactions and partitioning. Offered Every Other Year.
Course Material Fees: $5
CE 5230 Water Supply and Wastewater Engineering Cr. 3
Analysis and design of water supply and wastewater treatment systems; water distribution systems; treatment of municipal water supplies, including sedimentation, softening, filtration and disinfection; design of sanitary and storm sewers; primary, secondary and tertiary treatment plant design; sludge handling. Offered Yearly.
Prerequisite: CE 4210 with a minimum grade of C-
Course Material Fees: $5
CE 5240 Air Pollution Engineering Cr. 3
Designed to introduce students to the fields of air pollution and air quality, this course will provide an overview of the U.S. regulation of air pollution and explain the fundamental principles of the physical and chemical processes of air pollutants associated with natural and anthropogenic emission sources. In particular, we will focus on air pollutants that contribute to the formation of acid rain, smog and haze, as well as the gas- and particle-phase tropospheric chemistry. Engineering methods to control and mitigate air pollution will be also covered. Offered Yearly.
CE 5350 Introduction to Structural Dynamics Cr. 4
Prerequisite: ME 3400 with a minimum grade of C- and CE 4400 with a minimum grade of C-
CE 5370 Finite Element Analysis Fundamentals Cr. 3
Matrix structural analysis, discretization of continuous structural systems, stress analysis. Commercial finite element software preprocessing for developing finite element models; post-processing for evaluating analysis results. Offered Fall.
Prerequisites: CE 4400 with a minimum grade of C-
CE 5390 Design of Prestressed Concrete Structures Cr. 3
Focuses on the design of prestressed structures. The principle and methods of prestressing are discussed including approaches for computing prestress losses. The course deals with the estimation of capacity of various structural members such as beams and columns and their response to various structural actions such as flexure, vertical shear, horizontal shear, and combined axial and flexure loads. Performance at service is discussed in terms of stresses, deflections and crack control. Offered Yearly.
Prerequisite: CE 4420 with a minimum grade of C-
CE 5410 Energy, Emissions, Environment (E3) Design Cr. 3
Provides students the tools to uncover the relation between energy consumption and energy generation and optimize processes to take most advantage of low emitting energy options. Exposes students to design tools and methodologies from a diverse group of sources including US EPA, DOE, EIA, and the latest in emerging research. Offered Fall.
Equivalent: AET 5410, STE 5410
CE 5510 Geotechnical Engineering I Cr. 4
Site investigation, site improvement, bearing capacity and settlement of shallow foundations, axial capacity and lateral deflection of deep foundations, design of conventional earth retaining walls, and basics of slope stability analyses. Offered Fall.
Prerequisites: CE 4510 with a minimum grade of C-
CE 5520 Geotechnical Engineering II Cr. 3
Lateral earth pressure theories, design of conventional earth-retaining walls and of reinforced earth walls, anchored sheet-pile walls and cofferdams, fundamentals of soft-ground tunneling, two- and three-dimensional slope stability analyses, and static design of earth dams. Offered Every Other Year.
Prerequisites: CE 4510 with a minimum grade of C-
CE 5610 Advanced Highway Design Cr. 3
This course covers the standards recommended by. American Association of State Highway and Transportation Officials (AASHTO); FHWA; and MDOT for designing and evaluation of highways. Its objective is to introduce the students to the concepts, requirements, and fundamental skills for highway design and evaluation. The primary goal of geometric design is to provide for the safety and comfort of road users with due regard to social, economic and environmental constraints. Although there are suggested design standards and controls that must be followed to meet design goals, their application is determined on a case-by-case basis. The objective of this course is to illustrate the practical application of scientific knowledge to the planning and designing of roadway elements. The course uses up-to-date software design tools in accomplishing these goals. Upon completion of the course, the student is expected to be able to design and evaluate highways per AASHTO, MDOT and FHWA standards. Offered Fall.
Prerequisites: CE 4640 with a minimum grade of C-
CE 5640 Advanced Transportation Systems Design and Operation Cr. 3
Provides an overview of various system components of transportation, including the driver, vehicle and roadway. The subject matter will be covered at an intermediate level, appropriate for CEE students already familiar with the basic concepts of transportation engineering who wish to expand their knowledge, and for non-CEE students specifically interested in applications of transportation engineering theory. There will be a particular emphasis on transportation safety and multimodal roadway operations, as are typical priorities in an urban or suburban setting. Traffic flow design elements including volume, density and speed, intersection design elements including delay, capacity and crash countermeasures and terminal design elements including inflow, outflow and circulation. Offered Fall.
CE 5810 Legal Aspects of Engineering and Construction Cr. 3
Business of contracting, construction, liabilities of owner, architect, engineer and contractor. Rights in land, boundaries and foundations. Case studies. Offered Fall.
Course Material Fees: $5
CE 5830 Business of Engineering Cr. 3
Defining the engineering company, creating the organization, support services, business development, project management, scheduling, budgeting and profitability, operations, financial management and risk management. Offered Every Term.
Prerequisites: CE 4850 with a minimum grade of C-
CE 5995 Special Topics in Civil Engineering I Cr. 1-3
Topics to be announced in Schedule of Classes. Offered Intermittently. Repeatable for 12 Credits

CE - Civil Engineering 3
CE 6010 Introduction to Construction Engineering and Management Cr. 3
Course Material Fees: $15

CE 6050 Construction Cost Estimating Cr. 3
Estimating construction costs of engineering projects including materials, man-hours, equipment and overhead. Emphasis on construction equipment, including productivity and planning. Bidding and bid documents. Offered Every Other Year.
Prerequisites: CE 4850 with a minimum grade of C-

CE 6060 Construction Techniques and Methods Cr. 3
Construction techniques and methods for excavation, foundations, concrete, wood, steel, masonry, heavy construction, wastewater treatment plants, highways and roads, high rise structures, bridges, and tunneling projects. Offered Every Other Year.
Prerequisites: CE 4450 with a minimum grade of C-

CE 6130 Open Channel Hydraulics Cr. 3
Theoretical development of equations governing flow in open channels. Application to real-world engineering problems involving water surface profiles, flood studies, and river. Offered Winter.
Prerequisites: CE 3250 with a minimum grade of C-

CE 6150 Hydrologic Analysis and Design Cr. 3
Principles of surface water hydrology and their application for evaluation of floods and the design of surface runoff control system; watershed characteristics; design storms and SCS methods; unit hydrographs; hydrologic models; application of computer methods. Offered Every Other Year.
Prerequisites: CE 4210 with a minimum grade of C-

CE 6160 Principles of Atmospheric Chemistry and Applications Cr. 3
Provides the student with an overview of photochemical reactions that directly impact atmospheric composition and thus pertinent to the management of air quality. Focuses on atmospheric radicals, tropospheric ozone and mechanisms of particulate matter formation; the impact of these constituents associated with air pollutants on air quality and global climate change. Students will be introduced to modeling atmospheric chemistry using simple box models as well as state-of-the-science 3-dimensional global chemical transport models. Offered Yearly.

CE 6170 River Assessment and Restoration I Cr. 3
Students will learn field methods to assess stability, condition of rivers and contributing watersheds. Students will learn basic surveying techniques, apply these to the collection, analysis of cross-sectional data and longitudinal profiles. Other field methods include: Wolman pebble count, measurement of plan-form geometry, identification of key geomorphic features (e.g., bankful elevation, abandoned floodplains, mid-channel and transverse features). Field measurements will be made to calculate Bank Erosion Hazard Index (BEHI), Near-Bank Stress Index. Students will learn how to monitor a river for bank erosion (e.g., bank pins), riverbed aggradation/degradation (e.g., scour chains). Students will learn stream classification, sediment budgeting, methods to quantify sediment yield and transport, and how to analyze data, and identify trends in river hyrdology and sediment supply. Offered Every Other Spr/Sum.

CE 6190 Groundwater Cr. 3
Historical background, aquifers and aquitards, saturated and unsaturated flow, sources of ground water contamination, artificial recharge of ground water, development of ground water basins and efficient use of ground water resources. Offered Yearly.
Prerequisites: CE 3250 with a minimum grade of C-

CE 6270 Sustainability Assessment and Management Cr. 3
Sustainability assessment and management for engineering design and development; theoretical, regulatory, and practical implications; Detroit and global applications. Offered Yearly.
Prerequisites: CE 4210 with a minimum grade of C-
Equivalent: STE 6270

CE 6330 Advanced Structural Analysis Cr. 3
Prerequisites: CE 4410 with a minimum grade of C-

CE 6340 Bridge Design and Evaluation Cr. 3
Concepts, procedures, methods of design and condition evaluation for modern highway bridges, according to current specifications. Entire system is covered, including superstructure, substructure, and their connections. Offered Every Other Year.
Prerequisites: CE 4420 with a minimum grade of C-

CE 6410 Advanced Steel Design Cr. 3
Advanced topics of structural steel design: thin walled rolled and built-up members, beam columns, lateral torsional buckling, steel fatigue design, connection details. Steel design project. Offered Every Other Year.
Prerequisites: CE 4420 with a minimum grade of C-

CE 6580 Geoenvironmental Engineering I Cr. 4
Properties and test methods for natural and synthetic materials used in landfill; analysis of chemical interactions, flow mechanisms, stability and settlement for the design of landfill components. Offered Yearly.
Prerequisites: CE 4510 with a minimum grade of C-

CE 6660 Pavement Asset Management Cr. 3
Principles and practices of pavement management at the network and project level: serviceability, pavement design models, economic analysis, and priority programming. Offered Yearly.
Prerequisites: CE 4640 with a minimum grade of C-

CE 6880 Building Information Modeling (BIM) Cr. 3
Lectures, hands-on demonstrations and lab exercises to familiarize students with concepts and tools in Revit Architecture 2010 software; how software integrates 3D and 2D modeling. Includes an overview of the Building Information Modeling (BIM) process; integration of designs from different disciplines (architectural, structural and MEP) in a BIM model; and use of BIM tools (including Revit and Navisworks) to create 2D, 3D, 4D (schedule) and 5D (cost) models for project control purposes, as well as clash detections. Offered Every Other Year.
Prerequisites: CE 3010 with a minimum grade of C-

CE 6910 Pharmaceutical Waste: Environmental Impact and Management Cr. 2-3
Course designed for advanced professional and graduate students with sufficient chemistry and/or biological sciences background who are interested in the environmental impact, management, and regulation of waste pharmaceuticals as emerging issues. Offered Winter.
Restriction(s): Enrollment is limited to Graduate or Professional level students.
Equivalent: PSC 6910

CE 6991 Internship in Industry Cr. 1-4
Written report describing internship experience. Offered Every Term.
Repeatable for 4 Credits
CE 7020 Construction Safety Cr. 3
Safety problems in the construction industry and their technical and managerial solutions, construction accident and failure analysis and control. Safety program design and implementation with TQM integration. Offered Yearly.
Prerequisite: CE 6010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7070 Risk and Reliability in Civil Engineering Cr. 3
Uncertainty in civil engineering practice (e.g., loads, traffic, water demand, construction quality). Reliability theory based on probabilistic and statistical methods. Reliability-based engineering design and decision making. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7080 Civil Engineering Research Methods Cr. 3
Methods of data collecting and statistical analysis in context of civil engineering. Applications of advanced statistical analysis techniques, theory, discussion of methodological limitations. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students; enrollment limited to students in the College of Engineering.

CE 7090 Statistical and Econometric Methods in Civil Engineering II Cr. 3
The purpose of this course is to provide students with advanced training in the application of various statistical/econometric analysis techniques for addressing civil engineering-related problems. The methods considered in this class are an extension of the techniques taught in CE 7080. The course will present a number of model-estimation methods that are used in the areas of planning, design, operations and management of transportation systems. The course will emphasize model estimation and application, but underlying theory and limitations will be discussed to ensure that the methods are properly applied and understood. After completing this course, students will have exposure to an assortment of statistical modeling tools and additional insight to transportation data sources, their limitations, and the analysis of such data. It is important to note that the methods presented go well beyond the techniques typically covered in statistics courses. Offered Intermittently.
Prerequisite: CE 7080 with a minimum grade of B-
Restriction(s): Enrollment is limited to Graduate level students.

CE 7160 Advanced Principles of Atmospheric Chemistry and Applications Cr. 3
This course will provide students with an overview of photochemical reactions that directly impact atmospheric composition and thus pertinent to the management of air quality. In particular, we will focus on atmospheric radicals, tropospheric ozone and mechanisms of particulate matter formation; the impact of these constituents associated with air pollution on air quality and global climate change. Students will be introduced to modelling atmospheric chemistry using simple box models as well as state-of-the-science 3-dimensional global chemical transport models. Offered Yearly.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7170 Advanced River Assessment and Restoration I Cr. 3
Students will learn field engineering methods to assess the stability and condition of rivers and contributing watersheds. Students will learn basic surveying techniques, apply them to the collection and analyze cross-sectional and longitudinal profile data. Other methods include: Wolman pebble count, measurement of plan-form geometry, identification of key geomorphic features. Field measurements will be made to calculate the Bank Erosion Hazard Index (BEHI) and Near-Bank Stress Index among other parameters. Students will learn how to monitor riverbank erosion and riverbed aggradation/degradation via scour chains. Students will learn stream classification, the importance of sediment budget, methods to quantify sediment yield and transport, and how to analyze data to assess trends in hydrolgy and sediment supply. Offered Every Other Spr/Sum.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7180 Advanced River Assessment & Restoration II - Field Methods in Fluvial Geomorphology Cr. 3
Students will learn advanced field methods to assess the stability & condition of a river. Rivers are composed of water & sediment, both flowing under the influence of gravity. The proportions of water & sediment that make up the stream will dictate the stable form or the extent to which it is unstable. As such, one must be able to accurately quantify the water & sediment delivered to and transported through a stream. A considerable portion of this class will be spent in the field where students will learn techniques for measuring stream-flow & sediment transport. Students will learn several methods for calculating sediment transport & sediment yield rates. Students will learn field methods to quantitatively characterize the bed of a stream & the movement of that bed. Additionally, the quantification of sediment sinks such as deposition on the floodplain & in ponds/reservoirs, will be performed. Students will learn how the hydrology & sediment supplies to the Great Lakes have changed. Offered Every Other Spr/Sum.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7190 Groundwater Modeling Cr. 3
Analytical and numerical models of groundwater hydraulics and contaminant transport. Application of theoretical material developed in CE 6190. Case studies of model applications to real field problems. Offered Yearly.
Prerequisite: CE 6190 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7220 Industrial Waste Treatment Cr. 4
A study of the sources of specific industrial waste waters and their treatability by physical, chemical and biological processes, including the industries' obligation in the prevention of stream pollution. Problems and solutions involved in combined treatment of industrial and domestic waste waters. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.
Course Material Fees: $10

CE 7240 Advanced Air Pollution Engineering Cr. 3
Designed to introduce students to the fields of air pollution and air quality, this course will provide an overview of the U.S. regulation of air pollution and explain the fundamental principles of the physical and chemical processes of air pollutants associated with the natural and anthropogenic emission sources. In particular, we will focus on air pollutants that contribute to the formation of acid rain, smog and haze, as well as the gas- and particle-phase tropospheric chemistry. Engineering methods to control and mitigate air pollution will be also covered. Offered Yearly.
Restriction(s): Enrollment is limited to Graduate level students.
CE 7270 Big Data Applications in Environmental Engineering Cr. 3
This graduate-level course will focus on numerical methods and computational techniques required to run state-of-the-art 3-dimensional (3D) chemical transport models and process big data in order to address problems in environmental engineering, with a focus on air pollution and air quality. Students will have hands-on experience running GEOS-Chem models over Grid High Performance Computing at Wayne State University and employing programming skills to analyze the often dense model output datasets, and then employing strategies to visualize and interpret these data. Offered Intermittently.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7280 Applied Environmental Microbiology Cr. 3
Provides knowledge of microbiology, roles and relations of microorganisms to the environment. Topics include practical applications of environmental microbiology to environmental issues including water treatment, biodegradation and bioremediation of environmental pollutants, production of alternative fuels, and emerging environmental concern. Special consideration will be given to water treatment and microbe-mediated cycling of organic materials (i.e. pollutants) in a variety of natural and engineered environment. Offered Winter.
Restriction(s): Enrollment is limited to Graduate level students; enrollment limited to students in the College of Engineering.

CE 7300 Advanced Structural Mechanics Cr. 3
Theory of bending and torsion of bars, beams on elastic foundations. Introduction to theory of thin plates. Linear elastic fracture mechanics, application to brittle solids. Offered Fall.
Prerequisite: CE 6330 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7311 Sustainability of Urban Environmental Systems Cr. 2
Students will be introduced to topics in urban sustainability from multiple disciplinary perspectives such as: ecology, anthropology, communication, engineering, economics and urban planning. Questions in fostering a more sustainable urbanism will be introduced and evaluated. Offered Fall.
Restriction(s): Enrollment is limited to Graduate level students.
Equivalent: BIO 7310

CE 7370 Advanced Finite Element Analysis Cr. 3
Advanced topics in finite element analysis; stability analysis and vibrations of structural systems; modeling of complex structures, dynamic analysis, and nonlinear structural problems; and computer applications. Offered Every Other Year.
Prerequisite: CE 5370 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7380 Advanced Topics in Steel Design Cr. 3
Focuses on steel plasticity, plastic mechanism analysis, and the application of these concepts to design for strength and stability of steel structures. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7385 Advanced Topics in Reinforced Concrete Design Cr. 3
Focuses on reinforced concrete plasticity, plastic mechanism analysis, and the application of these concepts to design for strength of reinforced concrete structures. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7395 Advanced Design of Prestressed Concrete Structures Cr. 3
Focuses on the design of prestressed structures. The principle and methods of prestressing are discussed including approaches for computing prestress losses. Deals with the estimation of capacity of various structural members such as beams and columns and their response to various structural actions such as flexure, vertical shear, horizontal shear, and combined axial and flexure loads. Performance at service is discussed in terms of stresses, deflections and crack control. Offered Yearly.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7460 Advanced Composite Materials for Civil Infrastructure Cr. 3
Infrastructure problems. Advanced fiber reinforced plastics, including applications in primary/secondary and marine structures, and in rehabilitation. High performance fiber reinforced concrete. Controlled composite properties via composite design. Review of composite analysis and failure criteria based on micromechanics and laminate theory. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7500 Engineering Properties of Soils Cr. 4
Overview of experimental methods in geotechnical engineering, instrumentation and data acquisition methods, statistical analysis of test data, tests and theories for settlement predictions, tests and theories for hydraulic conductivity determination, tests and theories for static and cyclic stress-strain-volume change behavior of soils. Offered Every Other Year.
Prerequisite: CE 5510 with a minimum grade of C and CE 5520 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7580 Environmental Remediation Cr. 3
Site assessment; soil and groundwater investigation for remediation; application of remediation technologies; legislation related to remediation. Offered Yearly.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7600 Highway Safety and Risk Management Cr. 3
The focus of this course is on developing knowledge, skills, and abilities for planning, managing, and operating safe roadways for all users and modes of travel. It includes analysis of roadway design alternatives, statistical analysis of roadway safety issues, and crash countermeasure selection and evaluation. Students should have prior knowledge of the roadway geometric design process, traffic flow fundamentals (i.e., volume, density, speed, etc.), traffic control devices, and basic statistics (linear regression, t-tests, p-values, etc.). Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7620 Traffic Engineering Control and Operation Cr. 3
Traffic flow theories, macroscopic and microscopic models of traffic control, statistical analysis; design and application of intelligent transportation systems on traffic flow characteristics; evaluation. Offered Yearly.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7630 Urban Transportation Planning Cr. 3
This course provides an in-depth view of transportation planning and the analytical and statistical tools needed to understand different planning principles and the relationship between transportation and land use, travel demand forecasting, demand versus supply characteristics, and the development and evaluation of alternative systems. Additional topics will include benefit-cost analysis, transportation equity analysis, and transit accessibility measurement. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7670 Advanced Traffic Signal Systems Cr. 3
Analysis and design of traffic signal systems. Hardware, communication and detection systems associated with microcomputer-based signal systems. Coordinated signal systems. Offered Every Other Year.
Prerequisite: CE 7620 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
CE 7810 Advanced Legal Aspects of Engineering and Construction Cr. 3
Examines the legal structure of the architecture, engineering, and construction (AEC) industry from the perspective of the working professional. Topics covered include: fundamental principles of law; components of a contract; industry standard agreements; project delivery methods; liabilities of owner, architect, engineer, contractor, and subcontractors/suppliers; torts, negligence, and claims; delays and unforeseen conditions; insurance and indemnification; intellectual property; liens and bonds; dispute resolution basics; rights in land, boundaries, and foundations. Case studies will be used, where appropriate, to illustrate key concepts. Offered Intermittently.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7830 Construction Planning and Scheduling Cr. 3
Planning and scheduling of construction projects, project networks and critical path methods, resource leveling, use of Primavera software. Offered Yearly.
Prerequisite: CE 6010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7840 Facilities Management Cr. 3
Buildings and grounds operations and maintenance, planning design and construction, facilities economics and financing, real estate administration, environmental health and safety, health issues. Offered Winter.
Prerequisite: CE 6010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7850 Construction Contract Administration Cr. 3
Project documentation; project setup and contract directory development; adding new contracts; purchase orders; recording materials deliveries; producing daily reports; preparing minutes of meetings; log submittals and handling correspondence; tracking contracts and costs, setup and preparing progress payment requisitions, managing claims and change orders. Offered Every Other Year.
Prerequisite: CE 6010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7860 Construction Accounting and Financial Management Cr. 3
Construction financial management, construction accounting systems, analysis of financial statements, monitoring and controlling construction costs, managing overhead costs, markup, profit center analysis, cash flows for construction projects, financing, making financial decisions. Offered Every Other Year.
Prerequisite: CE 6010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

CE 7890 Integrated Construction Project Management Cr. 3
Construction project management framework, construction project integration, project scope management, time management, cost management, quality management, procurement management, risk management, communication management. Offered Every Other Year.
Restriction(s): Enrollment is limited to Graduate level students.

CE 7990 Directed Study Cr. 1-4
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.
Repeatable for 6 Credits

CE 7995 Special Topics in Civil Engineering II Cr. 1-3
A consideration of special subject matter in civil engineering. Topics to be announced in Schedule of Classes. Offered Intermittently.
Restriction(s): Enrollment is limited to Graduate level students.
Repeatable for 12 Credits

CE 7996 Research Cr. 1-4
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.
Repeatable for 6 Credits

CE 8999 Master's Thesis Research and Direction Cr. 1-8
Offered Every Term.
Restriction(s): Enrollment limited to students with a class of Candidate Masters; enrollment is limited to Graduate level students.
Repeatable for 8 Credits

CE 9990 Pre-Doctoral Candidacy Research Cr. 1-8
Research in preparation for doctoral dissertation. Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.
Repeatable for 12 Credits

CE 9991 Doctoral Candidate Status I: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.

CE 9992 Doctoral Candidate Status II: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.

CE 9993 Doctoral Candidate Status III: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.

CE 9994 Doctoral Candidate Status IV: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.

CE 9995 Candidate Maintenance Status: Doctoral Dissertation Research and Direction Cr. 0
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.
Course Material Fees: $416.08
Repeatable for 0 Credits