The field of biomedical engineering applies engineering science and design to the solution of problems related to human physiology and pathophysiology. Working at the interface of engineering and medicine, biomedical engineers work to prevent injury, diagnose disease, and treat illnesses or injuries that occur. Built on a strong research foundation that stretches back more than seventy years, the biomedical engineering program at Wayne State provides coursework and research opportunities in a broad range of areas in biomechanics, tissue engineering and biomaterials, biomedical imaging, bioinstrumentation and computational biology.

CAVANAUGH, JOHN: M.D., B.S., Michigan State University; M.S., Wayne State University; Professor and Chair

CHEN, CHAOYANG: M.D., Fujian Medical University; Resident in Orthopaedic Surgery, Beijing Medical University; Associate Research Professor

GELOVANI, JURI: M.D., Ph.D., University of Tartu; Professor

GENIK, RICHARD: Ph.D., M.S., Michigan State University; B.S., Wayne State University; Lecturer

GRIMM, MICHELE J.: Ph.D., M.S.E, University of Pennsylvania; B.S., Johns Hopkins University; Associate Professor

JIN, XIN: Ph.D., Wayne State University; M.S. and B.S. Tsinghua University; Assistant Professor (Research)

KALLAKURI, SRINIVASU: Ph.D., M.S. Wayne State University; M.S. Agra University; B.S. Andhra University; Assistant Professor (Research)

KAVDIA, MAHENDRA: Ph.D., Oklahoma State University; M Tech, Indian Institute of Technology; BTech, Indian Institute of Technology; Associate Professor

KING, ALBERT I.: Ph.D., M.S., Wayne State University; B.S., University of Hong Kong; Distinguished Professor

KLUEH, ULRIKE: Ph.D., M.S., University of Connecticut; B.A.Sc., University of Applied Sciences Mittelhessen; Associate Professor

KOU, ZHIFENG: Ph.D., North Dakota State; Associate Professor

LAM, MAI T.: Ph.D., M.S.E., B.S.E., University of Michigan; Assistant Professor

MUNDO, BRIAN: M.S., Wayne State University; B.E., University of Michigan; Lecturer

NASIRIAVANAKI, MOHAMMAD: Ph.D., M.A., University of Kent; M.Sc., University of Semnan, B.Sc., Isfahan University of Technology; Assistant Professor

REN, WEIPING: M.D., Shanghai Second Medical University; M.S. Shanghai; Associate Professor

SUNDARARAGHAVAN, HARINI: Ph.D., Rutgers, State University of New Jersey; B.S.E., University of Michigan; Associate Professor

YANG, KING-HAY: Ph.D., M.S., Wayne State University; B.S., National Taiwan University; Professor

ZHANG, LIYING: M.D., Shandong Medical University; Ph.D., Mahidol University; Associate Professor

- Injury Biomechanics (Bridge Graduate Certificate) (http://bulletins.wayne.edu/graduate/college-engineering/biomedical-engineering/injury-biomechanics-bridge-graduate-certificate)
- Biomedical Engineering (M.S.) (http://bulletins.wayne.edu/graduate/college-engineering/biomedical-engineering/biomedical-engineering-ms)
- Biomedical Engineering (Ph.D.) (http://bulletins.wayne.edu/graduate/college-engineering/biomedical-engineering/biomedical-engineering-phd)
- Biomedical Imaging (dual-title program) (http://bulletins.wayne.edu/graduate/college-engineering/biomedical-engineering/biomedical-imaging-dual-title-program)

BME 5010 Quantitative Physiology Cr. 4
Basic principles of human physiology presented from the engineering perspective. Bodily functions, their regulation and control discussed in quantitative terms and illustrated by mathematical models where feasible. Offered Fall, Winter.
Equivalent: CHE 5100, ECE 5100, IE 5100, ME 5100

BME 5020 Computer and Mathematical Applications in Biomedical Engineering Cr. 4

BME 5040 Fundamentals of Engineering Analysis Cr. 4
Intended to train biomedical engineering students, who have no engineering background, with fundamental principles of engineering and basics of an engineering programming language. It includes Matlab programming language and basics of engineering statics, dynamics, strength of materials, and electrical circuits. Offered Fall.

BME 5070 Engineering Anatomy Cr. 4
A cadaver based anatomy course for undergraduate students and MS-level students in biomedical engineering. This hands-on course is intended to give the students directed experience of the study of human anatomy in relation to engineering principles. The histological study of tissues in relation to mechanical function of the organism is included in this study. Offered Fall.
Prerequisites: BME 2070 with a minimum grade of C-
Restriction(s): Enrollment is limited to Graduate or Undergraduate level students; enrollment limited to students in a BS in Biomedical Engg degree.
Course Material Fees: $225

BME 5130 Vehicle Safety Engineering Cr. 4
Role of vehicle in road safety, occupation and pedestrian injury mechanisms, measures of vehicle safety performance, driver behavior and vehicle interface. Use of new technology to improve vehicle safety. Offered Irregularly.
BME 5210 Musculoskeletal Biomechanics Cr. 4
Structure and properties of the major tissue components of the musculoskeletal system and evaluation of how tissues combine to provide support and motion to the body. Offered Fall.
Prerequisite: BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C
Equivalent: ME 5160

BME 5220 Cellular and Tissue Biomechanics Cr. 3
Introduces biomechanics on the cellular to the tissue level. We will be studying mediators of cell mechanics such as the cytoskeleton, extracellular matrix and receptor-ligand interactions. Topics include cell adhesion, cell motility, and hemodynamics. Understanding of these topics will lend to discussion of translation of these forces up to the tissue level and subsequent tissue function. Offered Fall.
Prerequisites: MAT 2010 with a minimum grade of C- and MAT 2020 with a minimum grade of C

BME 5310 Device and Drug Approval and the FDA Cr. 3
Government regulations and industrial procedures that lead to device/drug approval. Offered Spring/Summer.
Prerequisite: BME 5010 with a minimum grade of C

BME 5350 Regenerative Biology and Medicine for Biomedical Engineers Cr. 4
Introduces students specializing in biomedical engineering and premedical students to the conceptual and methodological principles of modern regenerative biology and medicine. Includes a review of research methods and achievements in this field and the translational applications of regenerative biology to tissue engineering and the development of regenerative therapies. Offered Winter, Spring/Summer.
Prerequisites: BME 2070 with a minimum grade of C-

BME 5360 Histology and Embryology Cr. 4
Examines the normal structure and development of human tissues and organisms and the applications of this knowledge to biomedical engineering. Working with microscopes, students will study the molecular and cellular characteristics of different tissues and the lab procedures used for the analysis of tissue specimens. Particular attention is focused on technical principles of tissue engineering of human organs in experimental and clinical settings. Offered Fall, Spring/Summer.
Prerequisites: BME 2070 with a minimum grade of C-

BME 5370 Introduction to Biomaterials Cr. 4
Introduction to study of both biological materials (bone, muscle, etc.) and materials for medical applications. Topics include tissue properties and effects of pathiology, biocompatibility, and design considerations. Offered Winter.
Prerequisites: BE 1300 with a minimum grade of C- and BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C
Equivalent: ME 5180

BME 5380 Biocompatibility Cr. 4
Wound healing and the tissue response to foreign materials. The organization, activation, and mechanisms of the immune system. Bioactive materials and the molecular basis for surface recognition and masking. Offered Irregularly.
Prerequisite: BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C
Equivalent: MSE 5385

BME 5450 Microscopic Analysis: Methods & Instrumentation Cr. 4
Provides the students specializing in biomedical engineering with a basis for understanding the modern methods of microscopic analysis and the design of different types of instrumentation used for microscopic analysis and imaging. Offered Winter.
Prerequisites: BME 2070 with a minimum grade of C-

BME 5510 Introduction to Clinical Engineering and Technology Cr. 2
Fundamental topics, including evolution of clinical engineering, medical technology, risk management, patient safety, medical equipment planning. Offered Winter.
Prerequisite: BME 5010 with a minimum grade of C

BME 5590 Directed Study Cr. 1-4
Independent projects on subjects in the field of biomedical engineering. Offered Every Term.
Repeatable for 99.99 Credits

BME 5595 Special Topics in Biomedical Engineering I Cr. 1-4
Topics as announced in Schedule of Classes. Offered Irregularly.

BME 6130 Accident Reconstruction Cr. 3
Passenger car and light truck behavior in collisions; recognition of roadway markings and vehicle damage used to analyze vehicle accidents and to use that evidence to reconstruct driver, vehicle and occupant dynamics at the time of the collision. Offered Spring/Summer.

BME 6470 Smart Sensor Technology I: Design Cr. 4
Introduction to various types of sensors and the design of basic analog VLSI circuit building blocks. Offered Fall.
Equivalent: ECE 6570, PHY 6570

BME 6480 Biomedical Instrumentation Cr. 4
Engineering principles of physiological measurements, signal conditioning equipment, amplifiers, recorders and transducers. Recent advances in instrumentation. Offered Winter.
Prerequisites: BME 5020 with a minimum grade of C and ECE 3300 with a minimum grade of C or BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C
Equivalent: ECE 6180, IE 6180, ME 6180

BME 6500 Enabling Technology Cr. 3, 4
Principles of application of enabling technology across life stages, for differing ethnic and cultural backgrounds, for individuals with varying functional abilities. Offered Irregularly.
Equivalent: ECE 6100

BME 6591 Internship in Industry Cr. 1-4
Industrial internship in biomedical engineering. Offered Every Term.
Repeatable for 99 Credits

BME 7010 Functional Anatomy Cr. 4
Gross dissection-based course designed to introduce students to the anatomical structures associated with major physiological functions important to biomedical engineering. Offered Spring/Summer.
Prerequisite: BME 5010 with a minimum grade of C
Restriction(s): Enrollment is limited to students with a major in Biomedical Engineering; enrollment limited to students in a Doctor of Philosophy degree.
Course Material Fees: $100

BME 7020 Cardiovascular Systems Modeling Cr. 4
Application of engineering principals and mathematical and computational techniques to cardiovascular systems. Partial differential equations, signal transduction pathway and biotransport modeling, and introduction to systems biology approaches. Offered Winter.
Restriction(s): Enrollment is limited to Graduate level students.

BME 7030 Mechanisms and Models of Cellular Regulation for Engineering Cr. 3
Basic concepts of intracellular signaling pathways in response to environmental stimuli such as biomaterials and mechanical forces. Offered Winter.
Restriction(s): Enrollment is limited to Graduate level students.
BME 7100 Mathematical Modeling in Impact Biomechanics Cr. 4
Review of models created for impact simulations. Regional impact simulation models. Human and dummy models subject to various restraint systems. Offered Winter.
Prerequisite: BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
Equivalent: ECE 7100, IE 7100, ME 7100

BME 7120 Applied Finite Element Methods in Biomechanical Analysis Cr. 4
Structural, stress, and strain analysis of the human body and/or artificial implants, using realistic biomechanical data for relevant tissues and material. Theoretical background and applied analysis. Offered Irregularly.
Prerequisite: ME 5040 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

BME 7130 Computational Methods in Biology Cr. 3
Theory and computational methods for modeling the dynamic and thermodynamic properties of biomolecular systems. Methods for modeling biological systems involving biofluid dynamics. Offered Irregularly.
Restriction(s): Enrollment is limited to Graduate level students.

BME 7150 Biomechanics of Blast-Related Injuries Cr. 3
This course covers new and old information developed by military researchers on injuries sustained by military personnel due to explosions or blasts caused by a variety of weapon systems. Injuries to body regions from head to foot are discussed. Particular emphasis is placed on injuries to the spine and lower extremities for the mounted soldier and on brain injury for both the mounted and dismounted soldier. The course includes the modeling of blast and blast-related effects on selected body regions. Offered Fall.
Prerequisite: BME 7100 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

BME 7160 Impact Biomechanics Cr. 4
Biomechanical response of the body regions and the whole body to impact. Mechanisms of injury in blunt impact. Effects of restraints on injury reduction. Development of test surrogates such as dummies. Offered Fall.
Prerequisite: BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

BME 7170 Experimental Methods in Impact Biomechanics Cr. 4
Lecture and laboratory combined; principles of impact testing; hands-on experience in use of impact-test equipment, including sled, pendulum, other types of impactors, and drop-test techniques. Offered Biannually (Winter).
Prerequisite: BME 6480 with a minimum grade of C and BME 7160 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
Course Material Fees: $100

BME 7210 Tissue Biomechanics Cr. 4
Prerequisites: BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C and BME 5020 with a minimum grade of C and BME 5210 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
Equivalent: ME 7195

BME 7300 Advanced Topics in Biomechanics of Impact Cr. 4
Prerequisite: BME 5370 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

BME 7340 Medical Robotics and Systems Cr. 4
Technology that interfaces computer engineering and electronics with surgery; introduction of key concepts in the field, including medical robotics, image-guided surgery, segmentation/3D modeling, medical simulation, and medical sensors. Offered Winter.
Prerequisite: BME 5010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

BME 7370 Biomaterial Interfaces Cr. 4
Prerequisite: BME 5370 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

BME 7390 Tissue Engineering and Hybrid Systems Cr. 4
Seminar and project based approach to the design, development, analysis and application of organ and tissue replacement systems which incorporate processed materials and living cells. Offered Fall.
Prerequisites: BME 5370 with a minimum grade of C and CHE 7100 with a minimum grade of C and BME 5020 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
Equivalent: CHE 7390

BME 7400 Medical Robotics and Systems Cr. 4
Integration of ongoing research in integrated technology of smart sensors. Design of smart sensor devices using computer simulation. Fabrication of smart sensor. Offered Winter.
Prerequisite: ECE 5020 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students;
Equivalent: ECE 7400

BME 7470 Smart Sensor Technology II: Characterization and Fabrication Cr. 4
Integration of ongoing research in integrated technology of smart sensors. Design of smart sensor devices using computer simulation. Fabrication of smart sensor. Offered Winter.
Prerequisite: BME 6470 with a minimum grade of C or ECE 6570 with a minimum grade of C and PHY 6570 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
Course Material Fees: $50
Equivalent: ECE 7570, PHY 7580
BME 7490 Biomedical Microsystems Cr. 4
Biomedical Microsystems, with a focus on microfluidics and lab-on-a-chip technologies for medical diagnostics and biological research. Broad coverage of microscale physics; microfabrication methods; separation, purification, and other on-chip processes; biosensing. Offered Fall.
Prerequisite: ECE 5575 with a minimum grade of C or ECE 6570 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
Equivalent: CHE 7490, ECE 7590

BME 7670 Experimental Methods in Physiology Cr. 3
Basic principles and techniques for monitoring and reading EMGs, EEGs, ECGs, respiratory cycle, pulmonary function, galvanic skin response and polygraph, human acceleration response. Designing and carrying out a project involving human body acceleration measures and EMG responses; a second project will be designed and carried out using measurement techniques chosen by the students. Offered Spring/Summer.
Prerequisite: BME 5010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.
Course Material Fees: $40

BME 7710 Magnetic Resonance Imaging Cr. 4
Science and engineering of magnetic resonance imaging; relaxation times, signal concepts, Fourier imaging, sampling, filtering, and sequence design. Offered Biannually (Fall).
Prerequisite: BME 5020 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students.

BME 7720 MR Imaging of Neurovascular Disease Cr. 3
Recent advances in MRI technology applied to human brain vascular diseases. Methods include: 3D anatomical imaging, diffusion tensor imaging, functional brain imaging, perfusion imaging, and susceptibility weighted imaging. Offered Biannually (Fall).
Prerequisite: BME 5010 with a minimum grade of C
Restriction(s): Enrollment is limited to Graduate level students; enrollment limited to students in the College of Engineering.
Equivalent: PYC 7320

BME 7730 Medical Imaging Systems Cr. 3
Exposes students to the world of medical and biomedical imaging with emphasis on principles, approaches and applications of each modern imaging modality. Basic knowledge of MATLAB programming language is required. Offered Fall.
Restriction(s): Enrollment is limited to Graduate level students.
Equivalent: ECE 7740

BME 7990 Directed Study Cr. 1-4
Independent projects on subjects of interest in the field of biomedical engineering. Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.
Repeatable for 998.99 Credits

BME 7995 Special Topics in Biomedical Engineering II Cr. 1-4
Topics as announced in Schedule of Classes. Offered Irregularly.
Restriction(s): Enrollment is limited to Graduate level students.

BME 7996 Research Cr. 1-4
Combined experimental and analytical study of a problem in the field of biomedical engineering. Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students.
Repeatable for 998.99 Credits

BME 8070 Seminar in Biomedical Engineering Cr. 1
Lectures on biomedical engineering and related fields by guest speakers, faculty, and students. M. S. and Ph.D. students are required to take one semester. Offered Fall, Winter.
Restriction(s): Enrollment is limited to Graduate level students.

BME 8080 Doctoral Seminar in Biomedical Engineering Cr. 1
Seminar and research discussion based on research projects of BME doctoral students. Offered Every Term.
Restriction(s): Enrollment is limited to students with a major in Biomedical Engineering; enrollment limited to students in a Doctor of Philosophy degree.

BME 8999 Master's Thesis Research and Direction Cr. 1-8
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students with a major in Biomedical Engineering.
Repeatable for 8 Credits

BME 9990 Pre-Doctoral Candidacy Research Cr. 1-8
Research in preparation for doctoral dissertation. Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students with a major in Biomedical Engineering.
Repeatable for 12 Credits

BME 9991 Doctoral Candidate Status I: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students with a major in Biomedical Engineering.

BME 9992 Doctoral Candidate Status II: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Prerequisite: BME 9991 with a minimum grade of S
Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students with a major in Biomedical Engineering.

BME 9993 Doctoral Candidate Status III: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Prerequisite: BME 9992 with a minimum grade of S
Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students with a major in Biomedical Engineering.

BME 9994 Doctoral Candidate Status IV: Dissertation Research and Direction Cr. 7.5
Offered Every Term.
Prerequisite: BME 9993 with a minimum grade of S
Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students with a major in Biomedical Engineering.

BME 9995 Candidate Maintenance Status: Doctoral Dissertation Research and Direction Cr. 0
Offered Every Term.
Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students with a major in Biomedical Engineering.
Course Material Fees: $358.78
Repeatable for 0 Credits