In the field of electrical and computer engineering, basic physical and mathematical principles are utilized to develop new devices, technologies, and techniques of constantly broadening application. Examples are the development of smaller, cheaper, and more powerful computers, microprocessors, and other data processors, stemming from advances in solid-state and integrated circuit technology, and their utilization in a growing range of system applications; the growing use of data communications and sophisticated communication networks; the use of lasers, and the development of fiber optic and integrated optical devices for various applications ranging from optical data processing to communication; development of sophisticated control techniques, smart sensors, and transducers for advanced automation and electric power systems; the application of electronics to health care and diagnostics (such as noninvasive measurements and ultrasound imaging); and energy conversion devices.

The areas of study available in the Department include: solid-state devices, lasers, smart sensors, information sciences, digital circuits, computer engineering, integrated and active circuits, nanotechnology, biomedical electronics and systems, image processing, neural networks, and modern control theory.

Programs of both experimental and theoretical study are available in all these areas, as well as other interdisciplinary programs through the Electrical and Computer Engineering Department.

A more detailed exposition of the Department's research activities is available on our website. Senior students are encouraged to participate in research activities by means of independent study projects and student assistantships. Graduate students normally participate in the research program as graduate teaching assistants and research assistants.

The College of Engineering laboratory building contains seven instructional laboratories for experimental work in control systems, analog circuits, digital systems, microcomputers, instrumentation, optics, and communication systems; these laboratories are an integral part of the instructional program. In addition, the Departmental faculty have eight research laboratories dealing with computer systems, multi-media systems, semiconductor device materials including a clean-room facility, opto-electronics, computation and neural networks, image processing, nanotechnology, telematics, and embedded systems. Computer facilities are available for student use; the College Computer Center as well as the University Computing Services Center are available to all students through individual student accounts.

ARRATHOON, RAYMOND: Ph.D., Stanford University; M.S., California Institute of Technology; B.S., Cornell University; Professor Emeritus

AVRUTSKY, IVAN: Ph.D., M.S., B.S., Moscow Physical-Technical Institute, Russian Academy of Sciences; Associate Professor

BASU, AMAR: Ph.D., M.S.E, B.S., University of Michigan; Associate Professor

CHEN, PAI-YEN: Ph.D., University of Texas at Austin; M.S., B.S., National Chiao Tung University; Assistant Professor

CHENG, MARK MING-CHENG: Ph.D., B.S., National Tsing-Hua University; Associate Professor

ELNAGGAR, MOHAMMED I.: Ph.D., University of Manitoba; M.S. and B.S., Cairo University; Professor and Chair

ERLANDSON, ROBERT F.: Ph.D., Case Western Reserve University; B.S.E.E., Wayne State University; Professor Emeritus

HAN, XIAOYAN: Ph.D., Wayne State University; M.S., B.S., Nankai University; Professor

HAASSOUN, MOHAMAD H.: Ph.D., M.S., B.S., Wayne State University; Professor

LIN, FENG: Ph.D., M.A.Sc., University of Toronto; B.Eng, Shanghai Jiao-Tong University; Professor

LIU, JOHN: Ph.D., University of Southern California; M.S., New Mexico State University; M.S., Peking Depart; B.S., Peking University; Associate Professor

MAHMUD, SYED M.: Ph.D., University of Washington; B.S.E.E, Bangladesh University of Engineering and Technology; Associate Professor

MEISEL, JEROME: Ph.D., B.S.E.E., Case Institute of Technology; M.S.E.E., Massachusetts Institute of Technology, Professor Emeritus

NAZRI, Gholam-Abas: Ph.D., Case Western Reserve University; Lecturer

NOKLEBY, MATTHEW: Ph.D., Rice University; M.S.E.E, B.S.E.E., Brigham Young University; Assistant Professor

PANDYA, ABHILASH: Ph.D., Wayne State University; M.S., B.S., University of Michigan; Associate Professor

SARHAN, NABIL J.: Ph.D., M.S., Pennsylvania State University; B.Sc. E.E., Jordan University of Science and Technology; Associate Professor

SHAW, MELVIN P.: Ph.D., M.S., Case Institute of Technology; B.S., Brooklyn College; Professor Emeritus

SINGH, HARPREET: Ph.D., M.E., University of Roorkee; B.Sc, Punjab University; Professor

SIX, PEPE: Ph.D., University of Akron; M.S.E.E., University of California; B.S.E.E., Mapua Institute of Technology; Professor Emeritus

WANG, CAISHENG: Ph.D., Montana State University; M.S., B.S., Chongqing University; Associate Professor

WANG, LE Yi: Ph.D., McGill University; M.E., Shanghai Institute of Mechanical Engineering; Professor

WU, CHUNG-TSE: Ph.D., M.S., University of California, Los Angeles; B.S. National Taiwan University; Assistant Professor

XU, CHENG-ZHONG: Ph.D., University of Hong Kong; M.S., B.Sc., Nanjing University; Professor

XU, YONG: M.S., Ph.D., California Institute of Technology; B.Sc., Tsinghua University; Professor

YING, HAO: Ph.D., University of Alabama at Birmingham; M.S., B.S., Donghua University; Professor

ZHAO, YANG: Ph.D., Pennsylvania State University; M.S.E.E., Ohio State University; B.S., Zhejiang University; Professor
• Electrical Engineering (B.S.) (http://bulletins.wayne.edu/undergraduate/college-engineering/electrical-computer-engineering/electrical-engineering-bs)
• Control Systems (Certificate) (http://bulletins.wayne.edu/undergraduate/college-engineering/electrical-computer-engineering/control-systems-certificate)

ECE 2610 Digital Logic Cr. 4
Introduction to Boolean algebra; Logic Gates; Minimization of Boolean Functions; K-Map of up to 4 variables; Basic digital circuits like adder, subtractor, multiplexers, decoders etc.; Sequential circuits; Memories; PLAs; Counters using different flip-flops such as D, T, R-S and J-K; Design of simple computer; Introduction to Verilog and FPGAs. Offered Every Term.
Prerequisites: PHY 2185 with a minimum grade of C- or PHY 2180 with a minimum grade of C- and May be taken concurrently: CSC 2000 with a minimum grade of C-
Restriction(s): Enrollment is limited to Undergraduate level students.
Course Material Fees: $10

ECE 3040 Numerical Methods for Engineers Cr. 3
Developing numerical algorithms to provide solutions to engineering problems. Derivation of numerical algorithms and investigation of their stability, accuracy, efficiency and scalability. Programming numerical algorithms in Matlab. Topics include: Machine Round-off error, truncation error, root finding, solution of systems of linear and nonlinear algebraic equations, Taylor and Chebyshev series and rational function approximation, interpolation, regression, numerical differentiation, numerical integration, numerical solution of ordinary differential equations, and Monte Carlo methods. Offered Every Term.
Prerequisites: BE 1200 with a minimum grade of C- and MAT 2030 with a minimum grade of C- and May be taken concurrently: MAT 2150 with a minimum grade of C- and MAT 2250 with a minimum grade of C- and MAT 2350 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.
Course Material Fees: $15

ECE 3300 Introduction to Electrical Circuits Cr. 4
Electrical quantities and waveforms; resistance and Ohm's law; networks and Kirchhoff's laws; network equivalents; nodal and mesh analysis; Thevenin's theorem and other network theorems. First- and second-order systems. Offered Every Term.
Prerequisites: PHY 2185 with a minimum grade of C- or PHY 2180 with a minimum grade of C- and May be taken concurrently: MAT 2150 with a minimum grade of C- and MAT 2250 with a minimum grade of C- and MAT 2350 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.
Course Material Fees: $25

ECE 3330 Electrical Circuits II Cr. 4
Sinusoidal steady-state response; three-phase systems; complex frequency concepts; frequency responses; resonant and coupled circuits; application of Fourier transforms and Laplace transform to electrical circuits. Offered Every Term.
Prerequisites: MAT 2150 with a minimum grade of C- or MAT 2250 with a minimum grade of C- and MAT 2350 with a minimum grade of C- and MAT 3300 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 3570 Electronics Cr. 4
DC and small signal analysis of diodes, MOSFETs, and BJTs circuits; operational amplifiers, single-stage amplifiers, differential pair, gain, input resistance, output resistance, and bandwidth of amplifiers. Offered Every Term.
Prerequisite: ECE 3330 (may be taken concurrently) with a minimum grade of C- and ECE 3300 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.
Course Material Fees: $15

ECE 3620 Introduction to Microcomputers Cr. 4
Basics of digital systems, number systems, functional blocks of microcomputers, assembly language and machine code, applications of microcomputers and experimental demonstrations. Introduction to digital logic. Offered Every Term.
Prerequisites: BE 1200 with a minimum grade of C- and ECE 2610 with a minimum grade of C- and ECE 3610 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.
Course Material Fees: $25

ECE 4050 Algorithms and Data Structures Cr. 4
Introduction to problem solving methods and algorithm development; data abstraction for structures such as stacks, queues, linked lists, trees, and graphs; searching and sorting algorithms and their analysis. Offered Yearly.
Prerequisite: CSC 2000 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering. Equivalent: CSC 5050
ECE 4330 Linear Systems and Signals Cr. 4
Content includes: continuous-time and discrete-time linear systems and signals; properties of linear systems; classical analysis methods and convolution; system analysis method for zero-state and zero-input response; Laplace transform and its application to linear system analysis; Fourier series expansion of periodic signals; Fourier transform and the steady-state response; application to analog filters, control and communication systems; solution of linear difference equations; z-transform analysis method; sampling theory; discrete-time Fourier transform and its application in digital filter design. Offered Every Term.
Prerequisites: ECE 3330 with a minimum grade of C- and May be taken concurrently. ECE 3040 with a minimum grade of C- or BE 2550 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 4340 Microcomputer-Based Instrumentation Laboratory Cr. 2
Multipurpose personal-computer-based approach to real time instrumentation. Current interfacing and software used for data acquisition, transmission, analysis and report writing. Offered Every Term.
Prerequisites: ECE 2610 with a minimum grade of C- or ECE 3610 with a minimum grade of C- and ECE 3570 with a minimum grade of C- and ECE 3330 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.
Course Material Fees: $10

ECE 4470 Control Systems I Cr. 4
System representations; feedback characteristics; time-domain characteristics; signal flow graph, Routh-Hurwitz criteria; Root Locus Plots; Nyquist criteria, Bode plots; PID, phase-lead and phase-lag controller design. Offered Every Term.
Prerequisite: ECE 4330 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 4570 Fundamentals of Microelectronic Devices Cr. 4
Aspects of electrical properties of semiconductors, the physical electronics of P-N junction, bipolar, field effect transistors, and device fabrication technology essential to understanding semiconductor active devices and integrated circuits. Introduction to the behavior of semiconductor and electronics devices. Offered Every Term.
Prerequisites: ECE 3300 with a minimum grade of C- and MAT 2150 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 4600 Capstone Design I Cr. 4
Satisfies General Education Requirement: Writing Intensive Competency Design principles, subsystems of microcontrollers; designing products using microcontrollers, sensors and actuators. Offered Every Term.
Prerequisite: ENG 3050 with a minimum grade of C- and ECE 3620 with a minimum grade of C-
Restriction(s): Enrollment limited to students with a class of Senior; enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 4680 Computer Organization and Design Cr. 4
Introductory course. Instruction set design, basic processor implementation techniques, hardwired and microprogrammed control, performance analysis, memory hierarchy and cache design, pipelined processor design, I/O. Offered Yearly.
Prerequisites: BE 2100 with a minimum grade of C- and ECE 2610 with a minimum grade of C- and ECE 3620 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 4700 Introduction to Communication Theory Cr. 4
Prerequisite: (BE 2100 with a minimum grade of C- or BE 3220 with a minimum grade of C-) and ECE 4330 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 4800 Electromagnetic Fields and Waves I Cr. 4
Fundamentals of electromagnetic engineering, static electric and magnetic fields using vector analysis and fields of steady currents, Maxwell’s equations and boundary value problems. Basic principles of plane waves, transmission lines and radiation. Offered Every Term.
Prerequisite: ECE 3330 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.

ECE 4850 Engineering Optics Cr. 4
Topics include: lightwave fundamentals, optical sources and detectors, optical fibers and waveguides, optical instrumentation, optical sensors for self-driving vehicles and robotics, applications optical devices and systems. Offered Yearly.
Prerequisite: ECE 3330 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.
ECE 4990 Directed Study Cr. 1-4
Supervised study and instruction in a field selected by the student. Offered Every Term.
Restriction(s): Enrollment limited to students with a class of Senior; enrollment limited to students in the College of Engineering; enrollment limited to students in the following programs: BS in Biomedical Engineering, BS in Chemical Engineering, BS in Civil Engineering, BS in Electrical Engineering, BS in Industrial Engineering, BS in Mechanical Engineering.
Repeatable for 4 Credits

ECE 5020 Matrix Computation I Cr. 4
Background matrix algebra; linear system sensitivity; basic transformations; Gaussian elimination; symmetric systems; positive definite systems; Householder method for least squares problems; unsymmetric eigenvalue problems; the QR algorithm. Offered Yearly.
Prerequisites: 3 of CSC 2200 with a minimum grade of C, CSC 2201 with a minimum grade of C, MAT 2250 with a minimum grade of C- and 1 of ECE 3040 with a minimum grade of C-, BE 2550 with a minimum grade of C-
Equivalent: CSC 6620

ECE 5100 Quantitative Physiology Cr. 4
Basic principles of human physiology presented from the engineering perspective. Bodily functions, their regulation and control discussed in quantitative terms and illustrated by mathematical models where feasible. Offered Fall, Winter.
Equivalent: BME 5010, CHE 5100, IE 5100, ME 5100

ECE 5280 Introduction to Cyber-Physical Systems Cr. 3
Topics include: modeling, design, analysis, and implementation of cyber-physical systems; dynamic behavior modeling, state machine composition, and concurrent computation; sensors and actuators; embedded systems and networks; feedback control systems; temporal logic and model checking. Offered Fall, Winter.
Prerequisites: CSC 3100 with a minimum grade of C- and CSC 3110 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering.
Equivalent: CSC 5280

ECE 5330 Modeling and Control of Power Electronics and Electric Vehicle Powertrains Cr. 4
Basic methodologies for modeling, control system design of renewable power sources and power electronics systems. Offered Fall.
Restriction(s): Enrollment is limited to Graduate or Undergraduate level students; enrollment limited to students in the College of Engineering.
Equivalent: AET 5330, EVE 5430

ECE 5340 Advanced Energy Storage Systems for Electrification of Vehicles Cr. 4
The objective of this course is to learn fundamentals of energy storage systems for electric-based transportation and to provide basic knowledge in the multidisciplinary field of energy storage devices and their applications for land, space and marine vehicles. The focus of the course will be on advanced batteries, supercapacitors, and fuel cells for transpiration applications; battery sizing and integration to various land-marine-space vehicles; and the fundamentals of battery management systems including various methodologies in electrical control and thermal management modes. Offered Irregularly.

ECE 5350 Alternative Energy Sources and Conversions Cr. 4
Covers the fundamentals of alternative energy sources and conversion of these sources to electrical energy. The focus will be on solar and wind energy sources, covering design and operation of photovoltaic cells, solar thermal technologies, and design and operation of wind towers and wind farms. Other topics include: principle operations of geothermal energy, nuclear power plants, hydro-power, tidal and ocean waves and various methods of capturing and transforming these energy resources to electricity. Offered Irregularly.

ECE 5410 Power Electronics and Control Cr. 4
Control of electric energy using power electronic semiconductor devices; mathematical analysis of circuits containing these devices; design, modeling and control of power converters; applications of power electronic converters. Offered Spring/Summer.
Prerequisites: ECE 4330 with a minimum grade of C-
Restriction(s): Enrollment limited to students in the College of Engineering.
Equivalent: EVE 5410

ECE 5425 Introduction to Robotic Systems Cr. 4
Introduction to robot kinematics and control. Computational algorithms for robot movement, sensor fusion, and intelligent behavior, which are needed to build a system that performs actions and interacts with its environment. Offered Fall.
Prerequisites: BE 2550 with a minimum grade of C- or BE 1500 with a minimum grade of C- or BME 5020 with a minimum grade of C- or ECE 3040 with a minimum grade of C-

ECE 5430 Electric Energy Systems Engineering Cr. 4
Prerequisites: ECE 4330 with a minimum grade of C-

ECE 5440 Computer-Controlled Systems Cr. 4
Introduction to z-transform and sampling theory. Digital controller design using both transfer function techniques and state space methods. Implementation aspects of computer-controlled systems. Offered Yearly.
Prerequisites: ECE 4470 with a minimum grade of C- or CHE 4600 with a minimum grade of C- or ME 5540 with a minimum grade of C-

ECE 5460 Stochastic Processes in Engineering Cr. 4
Prerequisites: 1 of ECE 4330, ME 5000 and IE 3220 with a minimum grade of C-

ECE 5470 Control Systems II Cr. 4
State space representation of systems; stability and Liapunov methods, controllability and observability, pole placement design using state feedback, observer design, optimal control, linear quadratic regulators, Kalman filter. Offered Yearly.
Prerequisites: ECE 4470 with a minimum grade of C-

ECE 5550 Solid State Electronics Cr. 4
Physical basis for the opto-electric properties of solids with particular emphasis on semiconductors. Basic principles associated with solid-state devices. Extrinsic and intrinsic semiconductors. Behavior of P-N junctions, bi-polar and field-effect transistors. PC-based simulation of device characteristics using the PC1D simulator. Offered Every Term.
Prerequisites: ECE 4570 with a minimum grade of C- and ECE 4800 with a minimum grade of C-
ECE 5575 Introduction to Micro and Nano Electro Mechanical Systems (MEMS/NEMS) Cr. 4
General and specialized micro/nanofabrication techniques; basic sensing and actuating mechanisms (piezoresistive, piezoelectric, capacitive, electrostatic, thermal pneumatic, etc.); and design and operation of various MEMS/NEMS devices for automotive and biomedical applications; fabrication and characterization of basic MEMS structures. Offered Winter.

ECE 5610 Introduction to Parallel and Distributed Systems Cr. 4
Fundamentals of parallels and distributed systems. Programming experience in both computing environments. Offered Yearly.

ECE 5620 Embedded System Design Cr. 4
Microcontroller architecture and its subsystems. Wired and wireless protocols for vehicular networking applications. Design and implementation of real-time embedded systems. Offered Every Term. Prerequisites: ECE 4600 with a minimum grade of C-

ECE 5650 Computer Networks and Programming Cr. 4
Fundamentals of computer networks. TCP/IP and Internet protocols. Mobile and wireless networking. Network programming. Offered Every Term. Prerequisites: ECE 4050 with a minimum grade of C-

ECE 5680 Computer-Aided Logical Design and FPGAs Cr. 4
Topics include: review of digital design; advanced applications of Boolean algebra techniques; Computer-Aided Logical Design for large Boolean functions and simplification; threshold function; linear sequential machines; design using Verilog and FPGAs; introduction to cadence. Offered Winter. Prerequisites: ECE 4680 with a minimum grade of C-

ECE 5690 Introduction to Digital Image Processing Cr. 4
Provide college engineering seniors and first-year graduate students with introductory preparation in mathematical analysis, vectors, matrices, probability, statistics, sequences and series, and computer programming. Includes concepts of digital image processing from an operational perspective with good exposure to theory, accessibility of DIP to engineering, and a detailed review of current techniques. Offered Fall. Prerequisites: BE 2100 with a minimum grade of C-, ECE 4050 with a minimum grade of C, and ECE 4330 with a minimum grade of C-

ECE 5700 Digital Communications Cr. 4
Digital modulators and demodulators, M-ary PSK, M-ary FSK, optimal receiver for AWGN channel, correlator receiver, matched filter receiver, analysis of probability of bit errors for digital communication systems, Shannon limit, simulation of digital communication system. Offered Irregularly. Prerequisites: ECE 4700 with a minimum grade of C-

ECE 5770 Digital Signal Processing Cr. 4
Analysis of discrete signals and systems. Applications to digital filtering, active filters, digital communication and encoding. Offered Yearly. Prerequisites: ECE 4700 with a minimum grade of C-

ECE 5870 Optical Communication Networks Cr. 4
Laser and detectors; modulation and demodulation; optical transmitters and receivers; optical filters; optical amplifiers; architecture and network control; multi-access networks; FDDI networks, SONET/SDH, ATM, system performance. Offered Yearly. Prerequisites: ECE 4700 with a minimum grade of C- and ECE 4850 with a minimum grade of C-

ECE 5990 Directed Study Cr. 1-4
Supervised study and instruction in the field selected by the student. Offered Every Term. Restriction(s): Enrollment is limited to Graduate level students; enrollment is limited to students in the Department of Electrical & Computer Engineer. Repeatable for 4 Credits

ECE 5995 Special Topics in Electrical and Computer Engineering I Cr. 1-4
Special subject matter in electrical and computer engineering. Topics to be announced in Schedule of Classes. Offered Every Term. Repeatable for 8 Credits

ECE 6100 Enabling Technology Cr. 3,4
Principles of application of enabling technology across life stages, for differing ethnic and cultural backgrounds, for individuals with varying functional abilities. Offered Irregularly. Equivalent: BME 6500

ECE 6180 Biomedical Instrumentation Cr. 4
Engineering principles of physiological measurements, signal conditioning equipment, amplifiers, recorders and transducers. Recent advances in instrumentation. Offered Winter. Prerequisites: BME 5020 with a minimum grade of C and ECE 3300 with a minimum grade of C or BME 5010 with a minimum grade of C or BMS 6550 with a minimum grade of C Equivalent: BME 6480, IE 6180, ME 6180

ECE 6570 Smart Sensor Technology I: Design Cr. 4
Introduction to various types of sensors and the design of basic analog VLSI circuit building blocks. Offered for graduate credit only. Offered Fall. Restriction(s): Enrollment is limited to Graduate level students. Equivalent: BME 6470, PHY 6570

ECE 6660 Introduction to VLSI Systems Cr. 4
Survey of very large scale integrated circuit components and design procedures. MOS fabrication, MOS gates, circuit architecture, device design, manufacturing and interface techniques. Offered Yearly. Prerequisite: ECE 4680 with a minimum grade of C-

Course Material Fees: $30

ECE 6991 Industrial Internship Cr. 1-4
Internship experience that satisfies the curricular practical training requirements. Offered for graduate credit only. Offered Every Term. Restriction(s): Enrollment is limited to Graduate level students. Repeatable for 4 Credits